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Introduction

Th(' X-341 _ is a reusat)le, sul)-orl)ital test vehicle develol)e(t 1)v ()rbital Seien('es Col

t)oration (OSC) as part of NASA's Reusable Launch \:ehi(qe (RLV) Te(:lmology t)I'ogram. 7

Origixlally 1)rol)ose(l as a l)artially reusable, two-stage vehi(:le designed to deliver 1500 lb t.()

h)w Earth orbit, the X-34"s eurreilt I)Url)ose is t() t)r()vi(le a testbe(l for REX" t.e('hn()h)gies and

to demonstrate RLV ol)eratioIls. These te(:hnoh)gies inehl(h' autonom()us lan(tillg systems,

low-(:ost avioni(:s, _l(tvan(:e(l thermal t)rote('ti()n svstems (TPS), at,1 ('omt)osite airframe an(1

t)rot)ellant tanks. I/elatively small in size, it is 58 fl long with a wing sl)all ()f 28 ft and a gross

weight of al)t)roxixilately 45,000 lb. One of the program's goals is to (levelot) a x'ehi(:le (:ai)al)le

of a(:hieving Ma(:h 8 flight and an altitude of 250,000 .ft,. Part of NASA Langley t_eseai('h

Center's role in the X-34 t)rogram is to assist OSC by l)erforming 1)oth (:oml)ut_tiotml fluid

(lymmfi(: (CFD) analysis on the vehi(:le as well as aero(lymmfi(: and aeloheating wind t mmel

testing. ()no of Langley's tasks is t(} t)rovide ()SC with CFD 1)re(ti(:tiolls ()f entry heating

rates t.o I)e used for the TPS design.

The design of a vehicle's TPS involves tw() areas. First, the maximum surfa('e temt)er-

atllI'e along a tra.je(:tory (lefines whi(:h materials may ])e use(| fi)l' th(' TPS ov('r (tift'erent

i'egions of the vehi(:le. Coilversely, oIlee the TPS inaterials have been ('h()sen. flight limits ar('

required to ensure the temt)erature limits of the materials at'(' not violate(t fi)r off-nominal

tra,jeetories. CFD assist.s in this area with solutions at or ilear the peak heating point (as (h'-

fined |)y a stagnation heating rate) of a traje(:tory. Se(:ond, the total heat load over the flight

tra,ie(:tory defines the thickness of the TPS materials. Full CFD is not al)l)r()l)riate. Long

(:omI)uter run times for in(livi(lual Navier-Stokes (N-S) solutions l)rohibit running the many

solutions required to (lefine the heating along a trajectory. Instea(1, engineeritlg co(h,s su(:h as

I_IINI\.'ER s are tyl)i(:ally used to t)rovi(te the (:omt)lete time histories of surface temI)erature

used to ('omI)ute total heat loa(t.

Another apt)roa(:h to defining the surfa('e heating along a trajectory is to use a ('oml)ine(l

invisei(1-bouildary laver illetho(l. Invis(:i(l CFD solutions are less costly than N-S soluti(ms:

therefore, more t)oints on a trajectory can be (:omt)uted using the same eoI_q)uter resour('es.

Also, engineering boundary layer methods such as the LATCH (Langley At)t)roximate Three-

(tiinensional Convective Heating) eo(le :_ t)rovide reasonably ac(:urate heating rates over mu('h

of the vehi(:le (e.g., stagnation I'egioil, wind side, regions without flow set)arati(m) and run

in minutes on desktot) w()rkst.ations. However, (:are must be exer(_ised at high-altitu(le,

low Reynolds number ('oil(titions where the shock layer can not be divi(te(t into set)arate



inviscid and boundary laver regionsdue to viscous interactions. At these conditions, an

inviscid-boundary laver al)l)roach is inapprol)riate; and methods that treat the entire shock

layer as viscous, such as viscous-shock-layer (VSL), j° parabolized Navier-Stokes (PNS), l' or

N-S solvers are necessary. Inviscid-boundary layer methods are not meant to replace Hilt

COml)len,ent benchmark CFD solutions in the area of TPS design. Although it may still

be t)rohibitive to cover a trajectory in detail using this approach, heating rates computed

at selected i)oinls on the trajectory can be used to calibrate the temperature time histories

fi'om an engineering method.12

This l)aper details the use of an inviscid-boundary layer method to compute the surface

heating rates over the X-34 at several points along a representative trajectory supplied by

()SC. Inviscid. l)erfect-gas solutions are generated with the Langley Aerothermodynanfic

Utm'ind Relaxation Algorithm (LAURA) and the Data-Parallel Lower-Upt)er Relaxation

(DPLUR) code. LATCH is used to comtmte the surface heating rates and radiative equi-

iit)riuin teinperatures. Comparisons of the surface heating rates and temtmrat.ures are made

with viscous, thin-layer N-S soluticms fl'oIn LAURA. Ja Maximum wind-side, lee-side, and

wing leading edge temperalures arc, estimated as well. This work is part of a collective effort

at NASA Langh'y Io provide OSC with the aerothermal inforination necessary to design the

TPS for the X-34 vehicle. Additional data delivered to ()SC by Langley include benchInark

CFD solutions,l:_ experiinental aeroheating, H and time histories of surface temperature.le

Geometry

The full X-34 vehi(:le configuration (version X0001215) is shown in Fig. l(a), and the

geometry used fin' the inviscid solutions is shown in Fig. l(b). Gaps in the elevons and

I)etween different TPS materials are not modeled. Since LATCH recluires a single block

tol)ology, the area aft of the wing trailing edg(, (including the vertic:al tail and body flap) is

not includect in the inviscid geometry.

Trajectory

The X1004601 "no bounce" trajectory that is analyzed is shown in Figs. 2 5. This "no

t)ounce" trajectory is (tesigned to eliminate the t)ossibility of I)ouncing off of the atin()sphere

after reentry and is used as the reference trajectory for maximum wind-side and lee-side

heating. The angle of attack varies from 25 deg to 8 deg cluring the hyl)e, rsonic descent

portion of the trajectory. At the request of ()SC, the following inviscid-I)oun(lary layer cases

(2 as(:ent, 4 ctescent) arc computed and are listed in Table 1. For this paper, the cases

t)resented in detail are the M = 6.32, a = 23 (leg case (t = aa0 se,.)and the M = 6, o. =

15.22 deg case (t = 340 so,c:)because N-S solutions exist for these. Nonetheless, all inviscicl-



a) Full configuration used for viscous solutions.

b) Partial configuration used for inviscid solutions.

Figure 1:X-34 configurations.
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Figure 3:X1004601 trajectory (Mach number).

Table 1: Inviscid-boundary layer solutions.

Time Alt. Mach c_ 6¢t hMscid N-S soln. Note

(see) (kft) No. ((leg) (deg) c<)de used availabhC?

145 183 6 9 0 LAURA No

152 196 6.83 11 0 LAURA No

* 330 118 6.32 23 0, DPLUR, Yes

+ 10 LAURA Yes

* 340 112 6 15.22 0 DPLUI_ Yes

355 110 5.8 8 -10 LAURA No

578 86 3.6 6.46 -10 LAURA No

Ma(:h 6 ascent

Max. heating on ascent

Max. heating

Wind tunnel comparison

Min. _}, max. heating

Reentry max. q, max. heating
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Figure 6: Inviscid flow-field grid (coarsened).

b()un(larv lav(,r s()luti()ns ar(' us(_(t to conq)ut(, tim tim(' histoii(,s ()I"surf'a(:(, t(,ml)(watur(, us(,(t

f()r th(' TPS (t(,sign as d('tail('(1 in R.ef. 12.

Computational Mesh

Th(' invis('id v()lunm grid is ol)taine(l l)y truncating a viscous vohlln(, grid f()r th(, X-34

al tim wing trailing e(tg(,. B('('aus(, th(, viscous grid COlltains many grid I)oints to r(_solve

gra(li('nts, th(' inviscid grid is thinn(,(t and th(' l)oiIlts at(' redistri|)ut(,(1 to iedu('(' unn,,(:essary

('lust(,ring. Th(, resulting inviscid vohmm grid is 120 x 152 x 32 (:ells. Tim c()rresponding

viscous volum(, grid contains 64 cells between t h(, t)o(ty and grid outer boundary. Grid r(,s-

olution studies in Ret. 15 ill(li(:at(, 32 (,ells is sufficient for invis('id calculations. Although

DPLU1R us(,(l this grid size for both of its solutions, LAURA's inultiblo('k caI)abilities allow(,d

a (:()ars(,r gri(l in th(' circumfiwential (tir(wtioli t() I)(_ used in th(, llOS(, r(,gion for its _'omi)u-

rations. This (:oars(ufing of th(, grid speeds (:onvergell(:e of tim soluti(m in the stagnation

region. Details of the grid generation t)rocess for the X-34 v(,hi(:l(, are given in Ref. 16. A

saint)l(,, (,oarsened, flow-field grid is shown in Fig. 6.

Flow-field Codes

Invis(:i(! solutiolls for the cases listed in Table 1 are generated with tim CFD co(l(,s LAURA

and DPLUR. To provide surface heating information to OSC in a timely fashion, two codes

are used instead of one. Each co(t(' is luned for a differ(,nt (:Oml)uter archite(:tur(,; LAURA

for multitasking v('ctor (:ollll)llt(,i's and DPLUR for massively t)arall(,1 ma(:hines. Solutions fi)r



the databasecanbe run concurrentlyondiflbr(mt syst.enlswhichsavestim('. The inviscid flow

fields serveas inputs to the LATCH engineeringcode which coinlmtes surfacestreamlin(_s

and both laminar and turbulent heating rates. Followingarc brief descriptions of the three
methods.

LAURA

LAURA (Langley Aerothermodvnamic Upwind R(_laxation Algorithm) is a tinite-vohmw.

shock-cal)turing algorit.hln tor the steady-state solution of inviscid or viscous, hypersonic

flows on rectangularly ordered, structm'ed grids. LAURA has linen used extensiveh to

provide aerothermodvnamic characteristics for a Illllll|)(_r of a erost)ac(, vehicles (('.g. AFE. 17

HL-20, is Shuttle Orl)iter, I_ Mars Pathfinder, u() SST() Access to St)a('e 21) and is currently

I)eing used in th(' design and (,valuation of the X-33 RLV. _ The Ul)wind-I)iased im'iscid flux

is constructed using Roe's flux-difference-st)littillg z_ and Harten's entropy fix _ with second-

order corrections based on Yee's symmetric total-variation-diminishiilg scheme. _n A point-

implicit strategy is used which treats the variables a! tlw ('_11 center of inter('st iml)licitly

at the advanced iteration hwcl and uses tim latest available data from neighboring cells.

This results in an efficient:, paraiM iml)lementation oi1 multitasking vector ('Ollll)Utt'rs. 2(i

Gas chemistry options inclu(h' twrfect gas, equilil)rimn air, and air in chemical and thermal

nonequilibrimn. The algebraic tm'bulencc' models of Cebici-Smith=': and Baldwin-Lomax _s

are also available. More details of the algorithm can 1)(, forum in I/eI_. 26, 29, and 30.

DPLUR

The DPLUR (Data-Parallel Lower-Upper Relaxation) method :u':_ is based on the lower-

upper symmetric Gauss-Seidel method of Yoon and .IaIneson :_:_but has l)een modified tbr

(tata-l)arallel coml)uting. Tile Gauss-S(fi(M swecl)S of tile original metho(1 of Yoon anti ,Jam('-

son are rel)la(:ed with a series of I)oint .]acobi-like sul)iterations. This removes all data (h,-

l)endencies and yields a method that is ahnost perf(_('tly l)aralM. Like LAURA, it is a finite-

volunw, shock-(:apturiilg algorithm tbr the steady-state solution of both invis('id and viscous

flow fields on st ru(:tur(_(l grids. Pr(_scntly, there are options for l)erfect gas, equilibrium air,

and 5-st)celts noimquilibrium gas (:h(mfistry.

LATCH

The engineering code LATCH (Langley A1)l)roximate Three-Dimensional Conv('(:tive Heat-

ing) '_ coInt)ut(,s surface heating rates on t hree-diInensional (3-D) vehi(:l(_s at angh' of atta(:k.

The method is based on the axisymInetric analog tbr 3-D |)oml(lary layers an(t uses a gen-

eralized t)ody fitt('(l coordinat(_ system. BouiMary-laycr e(lg(_ ('onditions an(t the surface

velo(:ities used to determin(, iilviscid st reamlin(, direction at(, o|)tain(,(l from an invis('id flow-



field solution. In this 1)al)er,invisci(t solutionsare suppliedt)v both LAURA and DPLUR.

Instea(t of solving the boun(lary-layer equations along str('amlin(,s,an at)l)roximate heat-

ing method developedt)y Zol)v3_1that is valid for both laminar and turbulent heating is
used. This m('thod has t)eenshownto 1)ro(lu(:eaccurateresults for I)oth win(t tuImel and

flight ('on(litions:_1:_ with only a fl'action of the (:Oml)utational effoi't re(tuire(l l)y the fldl

I_()un(lary-layer equations.

Computational Resources

Th(' t)rimary advantage to using an inviscid-I)oundary laver method over a N-S (:ode is

the redu('tion in tim(, nee(ted to generate a solution. For the inviscid cases listed in Table 1,

DPLUR r('(lUil'('s 100 node-hours per solution on an IBM SP-2 and LAURA requires about

25 h()urs per solution on a CRAY YMP. LATCH boundary lay(_r solutions containing surfac(,

t(unt)eratur(,s and heating rates are then obtaine(t in about 5 minutes each on an SGI R10000

workstation. C()nversely, the viscous LAURA solutions re(tuir(, al)l)roxilnately 300 hours each

()n a CRAY C-90 to reach (:onvergen('e. Although the invis(:id-I)oun(lary laver aI)l)roach still

uses a ('onsi(leral)le amolmt of (:Oml)uter time an(l i'eSollrces ('omi)ar(,d t() l)m'(' (,ngin(,(u'i_lg

methods, it offers a signifi('ant savings over viscous N-S CFD (:odes.

Results

Sur|'a('(' t(unt)erature ('ol]tours and heating rates are examined for the X-34 at ,]I =

6.32. _ =23 (leg (t = 330 se(') an(l M = 6, (_ =15.22 (leg (/ = 340 s(,('). R_'sults flom

a (:()ml)ined inviscid-I)oun(tarv layer nmthod (LAURA-LATCH and DPLUR-LATCH) are

(:Oml)ared with viscous solutions from LAURA to assess the accuracy of the invis(:i(t-l)oundary

laver at)t)roach. Both laminar and turbulent solutions are (:omt)uted although ()SC only

requested turl)ulent heating data. All solutions assume a t)erfect gas and comtmte radiative

('(tuilil)rium wall temt)eratures based on an emissivity of 0.8. The turl)ulent, viscous s()lutions

fl'om LAURA are computed using the Baldwin-Lomax algebraic turbulence model. Details

of the LAURA vis(,ous solutions are found in Ref. 13.

Wind-side temt)eratur(_ contours are shown in Figs. 7 10 for the two flight coilditions.

Contour levels are ph)tted in 100 deg F increnmnts over a range of temt)eratures from 300

2000 (leg F. Th(, upper half of each figure depicts the inviscid-boundary layer results (either

LAURA-LATCH or DPLUR-LATCH), and th(, lower half shows the surihce temperatures

fiom a LAURA viscous solution. To help (:orrelate the t)redi(:te(l surface teml)eratures with

TPS materials, Tal)le 2 lists the multi-use capability of the TPS I)lankets used over much of

the vehi('l(,. In Fig. 7, the laminar teml)eratures fi'om DPLUR-LATCH agree quit(' well (i.e.

within 1()0 (leg F) with the temt)eratures from LAURA over much of th(, l()w('r surface. B()th
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Figure 7: Laminar wind-side temperatures at t ---- 330 sec.
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Figure 8: Turbulent wind-side temperatures at t -- 330 sec.

Table 2: Multi-use temperature limits of TPS blankets.

Material Max. Tenq)erature ((leg F)

High Temp. AFRSI 2000

AFRSI 1500

FRSI 700



Turbulent Windside
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Figure 9: Turbulent wind-side temperatures at t ---- 330 sec (with elevons deflected).
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Figure 11: Laminar lee-side temperatures at t ---- 330 sec.

soluti(ms l)redict teml)eratures of 800 deg F near the cent erline, 1100 deg F near t lw ()uter

e(lg(' of the strake, and 900 1000 deg F near th(, nfi(ldl(' of t h(' wing. This region ()t' high('r

t(,mi)eratures ext(,n(ting across the wing from the lea(ling to the trailing (,(tg(' is cause(I 1)v

the wing-bow shock interaction an(l is l)re(licted 1)v both met h()(ts. How(,ver, th(, magnitu(h,

of the temi)eratures al)t)ears to I)e slightly lower for DPLUR-LATCH. Similar coml)aris()ns

are seen fi)r the turl)ulent results showil in Figs. 8 10, all)eit the overall temt)eratur(' lev(,ls

are 300 600 (leg F higher than the laminar t.(_ml)eratures. The higher temt)eratures fore(, the

us(' of the High-Teml)erature AFRSI |)lankets over much of the windward surface. Figure 9

shows the temt)erature contours for the X-34 with +10 (keg (]efiected elevens. Both LAURA-

LATCH and LAURA show a l)ocket of higlwr temt)eratures (_ 1700 deg F) ()n the eleven

surfa('e. In addition, Figs. 8 and 9 off'era comparison betwe.(_n DPLUR-LATCH and LAUR A-

LATCH solutions at tile same (:onditions (excet)t for the eleven deflection). The temt)eratur('

contours f()r the two solutions are similar over nmch of the lower surfa('e excel)t near the

forwar(l t)ortion of tile vehi(:le where DPLUR-LATCH predi(:ts a lower temperature away

from the (:enterline. As i)reviously stated, a (:oarser grid was used for the inviscid LAURA

solution in the circunfferential direction in this region which may a(:count for some of the

differences. Figure l0 shows the wind-side teml)erature contours for t = 340 sec. As ext)ecte(t,

the lower angle of attack (¢_ = 15.22 (leg) results in generally lower teml)eratures on the wind

side of t h(' vehicle. For example, the ra(liative equilibrium teml)eratures over most of the

wing are around 200 (leg F lower than for the / = 330 sec (:as(,.

L('esi(le temt)eratm'e coIltours are shown in Figs. 11 13. Teml)erature contours for

11
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Figure 12: Turbulent lee-side temperatures at t -- 330 sec.
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Figure 13: Turbulent lee-side temperatures at _ ---- 340 sec.
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Laminar Side
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Figure 14: Laminar side temperatures at t ---- 330 sec.

the turt)ulent_ <lefle(:te(l elevon <:as(' at t = 330 sec are not l)resente(1 sin('(, the lee-si(le

t.enlt)eratures ()n the elevoil are very low (< 300 (lug F). Somewhat unexl)e(:te(lly fi)r all

itlvis(:i(I-I)oun(lary layer metho(t, the l(_e-si(te temperature (:ontouis from DPLUR-LATCH

agr(,(' quite well with the viscous LAURA solution at tlmse (:()n(titiolls. The same general

1)att(,rlls in teml)erature are seen near the fi)rwar(l t)ortion ()f the vehieh' as well _s on the

wing. These lee-si(le 1)re(li(:tions impact the TPS design t)e(:ause the t.eml)erature h'vels vary

around the limit of the FRSI blankets (700 (leg F).

Temt)erature contours on the si(t(' of the vehicle are show_l in Figs. 14 16. Agaill the

contour patterns from DPLUR-LATCH and the viscous LAURA solutions are very similar.

Therefore, as seen in Figs. 7-16, the invisci(t-boundary layer technique l)re(tiets ra(liative

e(luilit)rium wall temperatures that (:oral)are favoral)ly with temperatures fi'om a N-S solver.

To illustrate the differences 1)etween the invisci(l-boun(lary laver and N-S s()lutiolls m()re

clearly, surface heating rates are examined along several cut planes inchlding eenterline.

wing lea(ling edge, and (:ross-sectional cuts. Surface heating rates are more sensitive than

ra(tiative e(luilil)rium wall temperatures (q,, _ T,_,) and should provide more insight int() the

(:omt)arison 1)etwecn the meth()(ts. Th(' locations of cut l)lanes are shown in Fig. 17.

Lateral surface heating (tistril)utions are given in Figs. 18 20 at four axial stations.

The laminar heating rates in Fig. 18 are examined first, t)e(:ause there is n() inituence of

(liflbrent turl)ulen(:e models. The laminar cuts in Fig. 18 show, in ge_wral, an overall g()()(l

agreement l)etween the DPLUR-LATCH, LAURA-LATCH, ai_(t the viscous LAURA solu-

tions. However. the LATCH results t en(t to lm(lerestimate the maximum heating rates fl'om

13
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Figure 15: Turbulent side temperatures at t -- 330 sec.
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Figure 16: Turbulent side temperatures at t = 340 sec.
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Figure 17: Cut plane locations.

LAURA I)y ai)l)r()xinlat(_ly 15 20 l)('r(:(!nt at ea(:h axial station. Be('aus(' LATCH ('Oml)utes

heating rates along invis(:i(l surf'a(:(, streamlines, it has (tifli(:ulti('s in regions of high curvature

such as near the wing h'a(ting e(tge. Th(' surface streamlin(_s cannot a(:count for the large

three-dimensional effects that are t)resent. In particular, laminar heating rates flom LATCH

in high-curvature regions tend to l)e lower than those predicted by N-$ solvers. _ This may

hell) explain tim heating rate ('omt)arisons in Figs. 18((') and 18((l) and to a l('sser (legree in

Figs. 18(a) and 18(1)) where the streamlines wrat) fr()m t h(' h)wer surfa(:(, around t() the si(h,

()f the vehi(:le.

Differen('('s in the heating pattern near t lw will(lwar(l (:enterline ar(, n()te(l in Figs. 18(a)

arl(1 18(l)) between LATCH and LAURA. The ]wating (le(:reases as the (:enterline ix al)-

l)roa(:he(t. A 1)ossible explanation is suggested |)y the DPLUR.-LATCH and LAURA-LATCH

results in Fig. 180) ). LAURA-LATCH, which uses a coarser ('ircumi_rential grid in this re-

gion, does not predict the dip in heating as well as DPLUR-LATCH, whi(:h uses t tw hill grid.

The streamline directions oil the flat lower surfa(:e of the vehi(:le are sensitive to the grid

resolution. Also seen in Figs. 18(1)) an(t 18((:) is the in(:rease(t heating i)re(ti('te(t l)y LAURA

near the leewar(l (:enterlin( ,. Crossflow separation is present aroun(l x = 150 in Oll the leo

si(le of the vehi(:le, ':_ an(t this is refle('ted in tile higher heating rates. Being an engineeriilg

(:()(Re, LATCH cannot a(:(:ount for this.

The turbulent heating rates in Figs. 19 and 20 aro examine(l next. In general, g()o(l

agreeInent between LATCH ail(| LAURA is seen in the (:ross-se('tiona] cuts. esI)ccially on

the wing at :r : 300 in and J: : 450 in. However, unliko the laminar results, the turl)ul(,nt
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peakheating rates t'ronl LATCH tend to be higher than thosefrom LAURA. This fact can

|)eattributed to the inherent differencesbetweenthe engineeringturbulent l)oundary-layer

equatiollsin LATCH and the algebraicmodelemployedby LAUHA. For the t ml)uh'nt cases.

the heating patterns llear the windward centerline iIl Figs. 19(t)) alld 20(b) difli, r botween

LATCH and LAURA. Vortices on the wind side of the vehicle in the bomMary laver have

}men ol)served in the flow fields predicted by LAURA that might explain these differences, l:_

However, to ket' t) the COml_a,'isons in lmrst)ective, differences of 15 20 tmrcent in heating

rates with correst)onding difli'rences ot"4 5 l)ercent in t elnpt_,ature ar_, adequato for design

work.

\Vindward centt_rliile distribmitms for the two cases (¢ = 330 sec and t = 340 sec) are

I)resented in Fig. 21. The turbulent heating rates from LATCH (with both LAURA and

DPLUH) aro apt_roxilnately 15 percent lower than the heating rates from L AUR A ti)r most of

t ht, vehicle (:c > 100 in) for both <as("' .....'sTh(_ laminar heating rates in Fig. 21(a) fronl LATCH

are 25 tmrcent higher than t.he LAURA results for the forward half of t ho vehicle (:r < 300

in). Tho agreement is much better downstream. The heating rates from DPLUR-LATCH

art, closer to the LAURA heating rates due to t.[lO d(_ilsf,r circmnf('I'eIltial grid resolution used

by DPLUR.

\Ving leading edge heating distributions are presented in Figs. !2'2 24. The h,ading edge

is defined as t ht, outermost point of the wing (2 = 2,,a:_,, see Fig. 17) aim does not nocessarily

represent the highest heating rates or teml)e,'atures on the wing. In Figure 22, tht, laminar

heating rates fl'om LAURA are ai)proximately 15 percent higher than the invisc'id-boundarv

layer (DPLUR-LATCH and LAURA-LATCH) solutio,ls along lhe wing leading edge. This

corrt_st)onds to peak t.tmlt)(_i'at.urt_s (not shown) along the h,a(ting edgt' t)f 1800 (leg F fbr

LAURA and 1725 (leg F for LATCH. As showll previously, it is the invis(:i(t-1)OUlldary laver

solutions that pIedit:t the higher t.urtmlent heati,lg rates as shown in Figs. 23 and 24. Tur-

bulent peak telnperatures are 2035 deg F (_ = 330 sec) and 1965 (leg F (t = 340 sec) from

LAURA and 2110 deg F (t = 330 s( c) and 2020 (leg F (t. = 340 sec) from LATCH. SIRCA tiles

aI'(_ listed for t|l(_ wing loading edge, because these temperatures exceed the High-Temlmrature

AFRSI limit of 2000 deg F. Overall, the inviscid-I)oundary laver method predicts i'(,asonal)lv

good (within 15 t)er('ellt ) surface heatillg rates and radiative equilibrimn surface temperatures

along the wing leading edge, eSl)ecially coils|tiering the strong bow-wing shock i,lteraction.

Wing heati,lg distributions at z = 100 in. are presented in Figs. 25 27. Figures 25 and 26

show the effect of elevon deflection on the heating rates. Tim inviscid-t)oundaI'y lavor results

agree well with the vist:ous LAURA solutions over much of the wing ilMuding the ehwon.

Heating rates from LATCH are approximately 20 percent lower than LAURA fi_r the laminar

case presented in Fig. 25 but ar¢_ within 10 t)ercent for the tmbuh,Ilt ca s(_s. Althtnlgh not
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shown, the deflected elevon results in increases of about 190 deg F for laminar flow and

240 deg F for turlmlent flow over the surface temperatures of the mldeflected elevon. Both

LATCH and LAURA predict siinilar juInps in t.emperature.

Concluding Remarks

A combined inviscid-1)oundarv layer Inethod (LAURA-LATCH, DPLUR-LATCH) has

been used to predict the Slll'face heating rates and radiative equilibrium wall temi)ei'atures

for the X-34 vehMe along a refel'(qlt!e trajectory. This information has been delivered to ()SC

as part of a ('ollective effort by NASA Langley t.o aid the TPS design. Wall teml)erature pat-

terns fl'om tlw engineering 1)omMarv laver c(,(te LATCH are sinfilar to the wall temperatures

fl()m the N-S solver LAURA over much of tile vehicle at two flight coilditions. In(wease(I tein-

t)elatures along the wing due t() tlw wing-I)ow sho('k interaction and on the d(,flecte(t elevon

are (orre('tly ])re(li(:te(l t)v the invisci(I-i)oundarv layer technique. LATCH predicts surfa('e

heating rates that are generally within 20 percent of values fl'Oln a visc()us LAURA solution.

The ()l)served agreement between LATCH and LAURA is somewhat lmtter for turl)ulent

flows. The turl)ulent radiative equilil)rium surface temt)eratures are 300 600 (leg F higher

than the ('orresl)on(ting laminar temt)eratures at the same conditions. Tlw invis('i(1-1)(mn(tarv

laver meth()(l (DPLUR-LATCH and LAURA-LATCH) also uses much less c()mI)uter lime

than the N-S solver LAURA. Collsequently, many more solutions ('an I)e COml)ute(l along a

vehMe's trajectory with th(' same computational resources. This ability t.() generaW a rea-

somd)lv at'curate aerothermal (tatal)ase for a vehicle makes invis('id-l)omMarv laver methods

ex('elh'm design tools.
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